Role of molybdenum in nitrate reduction by chlorella.

نویسندگان

  • J M Vega
  • J Herrera
  • P J Aparicio
  • A Paneque
  • M Losada
چکیده

Molybdenum is absolutely required for the nitrate-reducing activity of the nicotinamide adenine dinucleotide nitrate reductase complex isolated from Chlorella fusca. The whole enzyme nicotinamide adenine dinucleotide nitrate reductase is formed by cells grown in the absence of added molybdate, but only its first activity (nicotinamide adenine dinucleotide diaphorase) is functional. The second activity of the complex, which subsequently participates also in the enzymatic transfer of electrons from nicotinamide adenine dinucleotide to nitrate (FNH(2)-nitrate reductase), depends on the presence of molybdenum. Neither molybdate nor nitrate is required for nitrate reductase synthesis de novo, but ammonia acts as a nutritional repressor of the complete enzyme complex. Under conditions which exclude de novo synthesis of nitrate reductase, the addition of molybdate to molybdenum-deficient cells clearly increases the activity level of this enzyme, thus suggesting in vivo incorporation of the trace metal into the pre-existing inactive apoenzyme.Competition studies with tungstate corroborate these conclusions and indicate that the only role played by molybdenum in Chlorella is connected with the reduction of nitrate to nitrite. Tungsten seems to act by replacing molybdenum in the nitrate reductase complex, thus rendering inactive the FNH(2)-nitrate reductase portion of the nicotinamide adenine dinucleotide nitrate reductase complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron paramagnetic resonance studies on the molybdenum center of assimilatory NADH:nitrate reductase from Chlorella vulgaris.

The assimilatory nitrate reductase from Chlorella contains flavin, heme, and molybdenum as prosthetic groups. The molybdenum in assimilatory nitrate reductase is associated with a pterin moiety (molybdopterin) as evidenced by the ability of the enzyme to donate active molybdenum cofactor to the Neurospora nitrate reductase mutant nit-1 and by the oxidative conversion of the pterin to two well c...

متن کامل

The role of the essential sulfhydryl group in assimilatory NADH: nitrate reductase of Chlorella.

Incubation of the complex metalloflavoprotein, assimilatory nitrate reductase with N-ethylmaleimide, or a spin-labeled analog, 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl, resulted in a time-dependent inactivation of NADH:nitrate reductase and NADH: cytochrome-c reductase activity with no effect on reduced methyl viologen:nitrate reductase activity. Inactivation of the enzyme, which could be ...

متن کامل

Electron Paramagnetic Resonance Studies on the Molybdenum Center of Assimilatory NADH : Nitrate Reductase from ChZoreZZu uuZguris

The assimilatory nitrate reductase from Chlorella contains flavin, heme, and molybdenum as prosthetic groups. The molybdenum in assimilatory nitrate reductase is associated with a pterin moiety (molybdopterin) as evidenced by the ability of the enzyme to donate active molybdenum cofactor to the Neurospora nitrate reductase mutant nit-1 and by the oxidative conversion of the pterin to two well c...

متن کامل

Oxidation--reduction midpoint potentials of the flavin, haem and Mo-pterin centres in spinach (Spinacia oleracea L.) nitrate reductase.

Oxidation-reduction midpoint potentials have been determined for the flavin, cytochrome b557 and Mo-pterin prosthetic groups of spinach (Spinacia oleracea L.) assimilatory nitrate reductase using visible, c.d. and room-temperature e.p.r. potentiometric titrations. At pH 7 and 25 degrees C, the midpoint potential for the FAD/FADH2 couple was determined by c.d. potentiometry to be -280 +/- 10 mV ...

متن کامل

Characterization of Nitrate Reductase Deficient Mutants of Chlorella sorokiniana.

After x-ray irradiation, 13 mutants of Chlorella sorokiniana incapable of using NO(3) (-) as N source were isolated using a pinpoint method. Using immunoprecipitation and Western blot assays, no nitrate reductase was found in five strains while in eight mutants the enzyme was detected. The latter strains contained different patterns of nitrate reductase partial reactions. All isolates were of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 48 3  شماره 

صفحات  -

تاریخ انتشار 1971